

# **Simplifying indices**

**A LEVEL LINKS** 

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

# **Key points**

•  $a^m \times a^n = a^{m+n}$ 

• 
$$\frac{a^m}{a^n} = a^{m-n}$$

- $(a^m)^n = a^{mn}$   $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$  i.e. the *n*th root of *a*

• 
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^n$$

• 
$$a^{-m} = \frac{1}{a^m}$$

The square root of a number produces two solutions, e.g.  $\sqrt{16} = \pm 4$ . •

# Simplify $\frac{6x^5}{2x^2}$ Example 1

| $\frac{6x^5}{2x^2} = 3x^3$ | $6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to |
|----------------------------|----------------------------------------------------------------|
|                            | give $\frac{x^5}{x^2} = x^{5-2} = x^3$                         |

Example 2

Simplify  $\frac{x^3 \times x^5}{x^4}$ 

| $\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$ | 1 Use the rule $a^m \times a^n = a^{m+n}$  |
|----------------------------------------------------------------------|--------------------------------------------|
| $=x^{8-4}=x^{4}$                                                     | 2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$ |

Example 3

Write  $\frac{1}{3x}$  as a single power of x



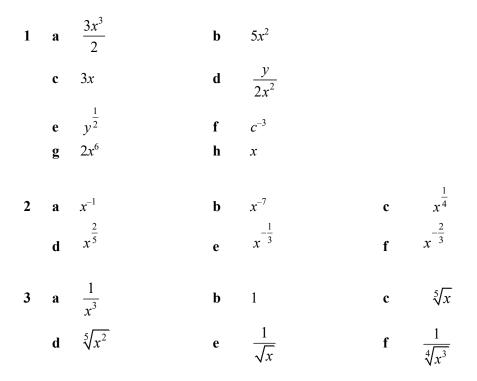
| $\frac{1}{3x} = \frac{1}{3}x^{-1}$ | Use the rule $\frac{1}{a^m} = a^{-m}$ , note that the |
|------------------------------------|-------------------------------------------------------|
|                                    | fraction $\frac{1}{3}$ remains unchanged              |

Example 4 Write  $\frac{4}{\sqrt{x}}$  as a single power of x  $\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$   $= 4x^{-\frac{1}{2}}$ 1 Use the rule  $a^{\frac{1}{n}} = \sqrt[n]{a}$ 2 Use the rule  $\frac{1}{a^{m}} = a^{-m}$ 

# **Practice questions**

1 Simplify.

| a | $\frac{3x^2 \times x^3}{2x^2}$         | b | $\frac{10x^5}{2x^2 \times x}$                                        |
|---|----------------------------------------|---|----------------------------------------------------------------------|
| c | $\frac{3x \times 2x^3}{2x^3}$          | d | $\frac{7x^3y^2}{14x^5y}$                                             |
| e | $\frac{y^2}{y^{\frac{1}{2}} \times y}$ | f | $\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$                 |
| g | $\frac{\left(2x^2\right)^3}{4x^0}$     | h | $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$ |


| Watch out!                                                                                         |
|----------------------------------------------------------------------------------------------------|
| Remember that<br>any value raised to<br>the power of zero<br>is 1. This is the<br>rule $a^0 = 1$ . |
|                                                                                                    |

- 2 Write the following as a single power of *x*.
  - **a**  $\frac{1}{x}$  **b**  $\frac{1}{x^7}$  **c**  $\sqrt[4]{x}$ **d**  $\sqrt[5]{x^2}$  **e**  $\frac{1}{\sqrt[3]{x}}$  **f**  $\frac{1}{\sqrt[3]{x^2}}$
- 3 Write the following without negative or fractional powers.

| a | $x^{-3}$          | <b>b</b> $x^0$              | c | $x^{\frac{1}{5}}$  |
|---|-------------------|-----------------------------|---|--------------------|
| d | $x^{\frac{2}{5}}$ | <b>e</b> $x^{-\frac{1}{2}}$ | f | $x^{-\frac{3}{4}}$ |



#### Answers

