

Complete the square in the form $p(x+q)^2 + r$

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 1 Write $x^2 + 6x + 4$ in the form $p(x + q)^2 + r$, where p, q and r are integers to be found.

$$x^{2} + 6x + 4$$
 1 Write $x^{2} + bx + c = 0$ in the form $(x+3)^{2} - 9 + 4$ $(x+3)^{2} - 5$ 2 Simplify.

Example 2 Write $2x^2 - 7x + 4$ in the form $p(x+q)^2 + r$, where p, q and r are integers to be found.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$2\left[\left(x-\frac{7}{4}\right)^2-\left(\frac{7}{4}\right)^2\right]+4$	Now complete the square by writing $x^{2} - \frac{7}{2}x \text{ in the form}$ $\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}$
$2\left(x-\frac{7}{4}\right)^2-\frac{49}{8}+4$	3 Expand the square brackets.
$2\left(x-\frac{7}{4}\right)^2-\frac{17}{8}$	4 Simplify.

Practice questions

1 Write the following in the form $p(x+q)^2 + r$, where p, q and r are integers to be found

a
$$9x^2 + 18x - 2$$

b
$$5x^2 - 15x + 4$$

c
$$4x^2 + 8x + 2$$

d
$$4x^2 - 20x + 15$$

e
$$2x^2 + 6x - 1$$

$$\mathbf{f} = 10x^2 + 2x + 3$$

Answers

1 a
$$9(x+1)^2-11$$

b
$$5\left(x-\frac{3}{2}\right)^2-\frac{29}{4}$$

c
$$4(x+1)^2-2$$

d
$$4\left(x-\frac{5}{2}\right)^2-10$$

$$e 2\left(x-\frac{3}{2}\right)^2-\frac{11}{2}$$

$$\mathbf{f} = 10\left(x - \frac{1}{10}\right)^2 + \frac{29}{10}$$