Pearson Edexcel

Quadratic formula to solve quadratic equations

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$a = 1, b = 6, c = 4$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$	2 Substitute $a = 1, b = 6, c = 4$ into the formula.
$x = \frac{-6 \pm \sqrt{20}}{2}$	3 Simplify. The denominator is 2, but this is only because $a = 1$. The denominator will not always be 2.
$x = \frac{-6 \pm 2\sqrt{5}}{2}$	4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
$x = -3 \pm \sqrt{5}$	5 Simplify by dividing numerator and denominator by 2.
So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$	6 Write down both the solutions.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice questions

1	Sol	ve, giving your solutions in su	ard form.	
	a	$3x^2 + 6x + 2 = 0$	b	$2x^2-4x-7=0$

. .

2 Solve the equation
$$x^2 - 7x + 2 = 0$$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers
3 Solve $10x^2 + 3x + 3 = 5$

3 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form. Hint Get all terms onto one side of the equation.

- 4 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - $\mathbf{a} \qquad 4x(x-1) = 3x-2$
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Answers

1 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$
2 $x = \frac{7 + \sqrt{41}}{2}$ or $x = \frac{7 - \sqrt{41}}{2}$
3 $x = \frac{-3 + \sqrt{89}}{20}$ or $x = \frac{-3 - \sqrt{89}}{20}$
4 **a** $x = \frac{7 + \sqrt{17}}{8}$ or $x = \frac{7 - \sqrt{17}}{8}$
b $x = -1 + \sqrt{10}$ or $x = -1 - \sqrt{10}$
c $x = -1\frac{2}{3}$ or $x = 2$