

Simplifying fractions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$ $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. •

Example 1 Evaluate 10⁰

$10^0 = 1$	Any value raised to the power of zero is equal to 1
------------	---

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}} = \sqrt{9}$ = 3	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
-------------------------------------	--

Example 3

$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$	1 Use the rule $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Evaluate $27^{\frac{1}{3}}$

Example 5

Example 4 Evaluate 4^{-2}

$4^{-2} = \frac{1}{4^2}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$
$=\frac{1}{16}$	2 Use $4^2 = 16$

Simplify
$$\frac{6x^5}{2x^2}$$

$$\begin{array}{c}
\frac{6x^5}{2x^2} = 3x^3 \\
\text{give } \frac{x^5}{x^2} = x^{5-2} = x^3
\end{array}$$

to

Example 6 Simplify
$$\frac{x^3 \times x^5}{x^4}$$

$$\frac{x^{3} \times x^{5}}{x^{4}} = \frac{x^{3+5}}{x^{4}} = \frac{x^{8}}{x^{4}}$$

$$= x^{8-4} = x^{4}$$
1 Use the rule $a^{m} \times a^{n} = a^{m+n}$
2 Use the rule $\frac{a^{m}}{a^{n}} = a^{m-n}$

Example 7 Write $\frac{1}{3x}$ as a single power of x

$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
	fraction $\frac{1}{3}$ remains unchanged

Example 8

Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

Example 9 Simplify $\frac{x^5}{x^2}$ $\begin{vmatrix}
\frac{x^5}{x^2} = x^3 \\
\frac{x^5}{x^2} = x^5 - 2 = x^3
\end{vmatrix}$ use the rule $\frac{a^m}{a^n} = a^{m-n}$ to give

Example 10 Simplify $6x^6 \times 3x^4$

$6 \times 3 = 18$ and then use the rule $a^m \times a^n = a^{m+n}$ to give
$x^6 \times x^4 = x^{6+4} = x^{10}$

Example 11 Simplify $(x^4)^2 \times 3x^5$

$(x^4)^2 \times 3x^5 = 3x^{13}$	$3 \times 1 = 3$ and then use the rule $(a^m)^n = a^{mn}$ following by to give $a^m \times a^n = a^{m+n}$
	(x4)2 × x5 = x4 × 2 × x5 = x ⁸ × x ⁵ = x ^{8 + 5} = x ¹³

Practice questions

1 Write as sums of powers of *x*.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2 \left(x - \frac{1}{x} \right)$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$

d
$$\frac{6x^5 + 3x^4}{3x^2}$$
 e $\frac{5x^5 + 20x^4}{10x^2}$ **f** $\frac{7x^5 - 5x^4}{2x^6}$

Answers

1 a $x^3 + x^{-2}$ **b** $x^3 - x$ **c** $x^{-2} + x^{-7}$ **d** $2x^3 + x^2$ **e** $0.5x^3 + 2x^2$ **f** $3.5x^{-1} - 2.5x^{-2}$

A2400 ch1b | Version 1.1 | September 2020