

Expanding brackets and surds

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\bullet \qquad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Example 1 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$	1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
= 7 - 2	2 Collect like terms:
= 5	$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Practice questions

1 Expand and simplify.

a
$$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$$
 b $(3 + \sqrt{3})(5 - \sqrt{12})$ **c** $(4 - \sqrt{5})(\sqrt{45} + 2)$ **d** $(5 + \sqrt{2})(6 - \sqrt{8})$

b
$$(3+\sqrt{3})(5-\sqrt{12})$$

c
$$(4-\sqrt{5})(\sqrt{45}+2)$$

d
$$(5+\sqrt{2})(6-\sqrt{8})$$

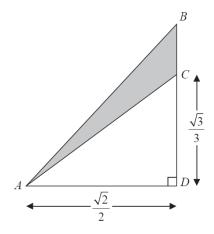
Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$

Work out the value of $\left(\sqrt{2} + \sqrt{8}\right)^2$ 3

Expand $(1 + \sqrt{2})(3 - \sqrt{2})$

Give your answer in the form $a + b\sqrt{2}$ where a and b are integers.

ABD is a right angled triangle.



All measurements are given in centimetres.

C is the point on BD such that $CD = \frac{\sqrt{3}}{3}$

$$AD = BD = \frac{\sqrt{2}}{2}$$

Work out the exact area, in cm², of the shaded region.

6 The diagram shows a triangle *DEF* inside a rectangle *ABCD*.

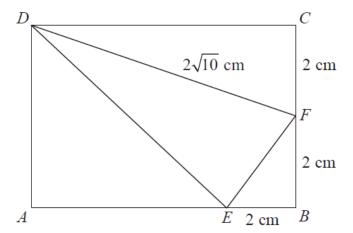


Diagram **NOT** accurately drawn

Show that the area of triangle DEF is 8 cm². You must show all your working.

7	The diagram	shows a	trianole	DEF inside	e a rectanole	ARCD
,	The diagram	silows a	urangic		a rectangle	ADCD.

$$a = \sqrt{8} + 2$$
$$b = \sqrt{8} - 2$$
$$T = a^2 - b^2$$

Work out the value of T.

Give your answer in the form $c\sqrt{2}$ where c is an integer.

Answers

b
$$9-\sqrt{3}$$

c
$$10\sqrt{5}-7$$

d
$$26-4\sqrt{2}$$

$$\mathbf{2}$$
 $x-y$

4 1 + 2
$$\sqrt{2}$$

$$5 \frac{1}{4} - \frac{\sqrt{6}}{12}$$

Method:

$$\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$$
 or $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$

$$\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$$

$$\frac{1}{4} - \frac{\sqrt{6}}{12}$$
 oe

 $\bigcirc R$

$$(\mathrm{BC}=)\,\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}$$

$$\frac{1}{2} \times \left\{ \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3} \right\} \times \frac{\sqrt{2}}{2}$$

$$\frac{1}{4} - \frac{\sqrt{6}}{12}$$
 oe

6

Method:

$$(2\sqrt{10})^2 - 2^2 (= 36)$$

$$(CD =) 6$$

$$6' \times 4 - \frac{1}{2} \times 6' \times 2 - \frac{1}{2} \times 2 \times 2 - \frac{1}{2} \times (6' - 2) \times 4$$

7
$$16\sqrt{2}$$