

Simplifying surds

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify
$$\sqrt{50}$$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25}\times\sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=5 \times \sqrt{2}$	3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$	
$=3\sqrt{3}$	4 Collect like terms

Practice questions

Sin	nplify.		
a	$\sqrt{45}$	b	$\sqrt{125}$
c	$\sqrt{48}$	d	$\sqrt{175}$
e	$\sqrt{300}$	f	$\sqrt{28}$
g	$\sqrt{72}$	h	$\sqrt{162}$

Hint
One of the two
numbers you
choose at the start
must be a square
number.

2 Simplify.

1

- **a** $\sqrt{72} + \sqrt{162}$ **c** $\sqrt{50} - \sqrt{8}$
- e $2\sqrt{28} + \sqrt{28}$

b	$\sqrt{45} - 2\sqrt{5}$
d	$\sqrt{75} - \sqrt{48}$
f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

Answers

1	a	3√5	b	5√5
	c	$4\sqrt{3}$	d	5√7
	e	10√3	f	2√7
	g	6√2	h	9√2
2	a	15√2	b	$\sqrt{5}$
	c	3√2	d	$\sqrt{3}$

e 6√7

f $5\sqrt{3}$