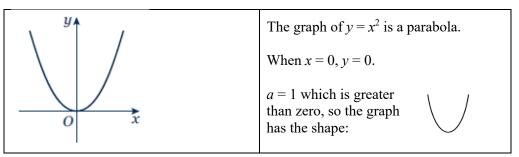


Sketching quadratics

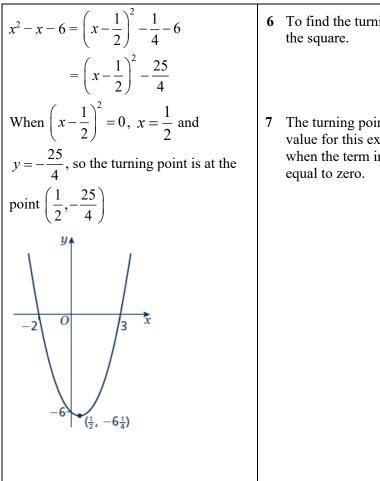
A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants


Key points

- The graph of the quadratic function $y = ax^2 + bx + c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and a shape as shown.

- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute x = 0 into the function.
- To find where the curve intersects the x-axis substitute y = 0 into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

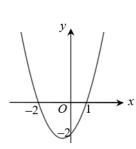

Example 1 Sketch the graph of $y = x^2$.

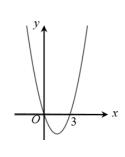
Example 2 Sketch the graph of $y = x^2 - x - 6$.

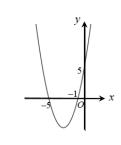
When $x = 0$, $y = 0^2 - 0 - 6 = -6$ So the graph intersects the y-axis at $(0, -6)$	1 Find where the graph intersects the y-axis by substituting $x = 0$.
When $y = 0, x^2 - x - 6 = 0$	2 Find where the graph intersects the x -axis by substituting $y = 0$.
(x+2)(x-3)=0	3 Solve the equation by factorising.
x = -2 or x = 3	4 Solve $(x + 2) = 0$ and $(x - 3) = 0$.
So, the graph intersects the <i>x</i> -axis at $(-2, 0)$ and $(3, 0)$	5 $a = 1$ which is greater than zero, so the graph has the shape:
	<i>(continued on next page)</i>

6 To find the turning point, complete the square.

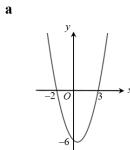
7 The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

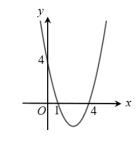

Practice questions


- 1 Sketch the graph of $y = -x^2$
- 2 Sketch each graph, labelling where the curve crosses the axes. **a** y = (x+2)(x-1) **b** y = x(x-3) **c** y = (x+1)(x+5)
- 3 Sketch each graph, labelling where the curve crosses the axes. a $y = x^2 - x - 6$ b $y = x^2 - 5x + 4$ c $y = x^2 - 4$ d $y = x^2 + 4x$ e $y = 9 - x^2$ f $y = x^2 + 2x - 3$
- 4 Sketch the graph of $y = 2x^2 + 5x 3$, labelling where the curve crosses the axes.
- 5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
 - **a** $y = x^2 5x + 6$ **b** $y = -x^2 + 7x 12$ **c** $y = -x^2 + 4x$
- 6 Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.



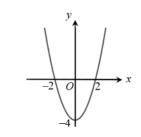
Answers

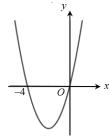


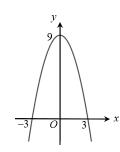


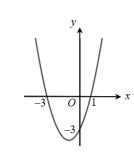
c

c


f

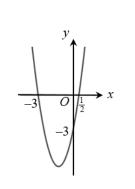

b

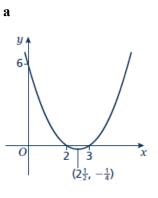

e

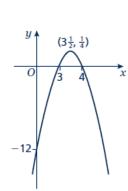


d

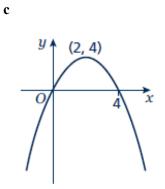
3

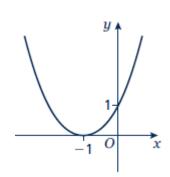





4

5


6



b

Line of symmetry at x = -1