

Indices – problem solving

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$ $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. ٠

Example 1	Write $\frac{1}{3x}$ as a single power of x	
Example 1	Write $\frac{1}{3x}$ as a single power of x	

$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
	fraction $\frac{1}{3}$ remains unchanged

Example 2

Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

Practice questions

1 Write the following in the form ax^n .

a
$$5\sqrt{x}$$
 b $\frac{2}{x^3}$ **c** $\frac{1}{3x^4}$
d $\frac{2}{\sqrt{x}}$ **e** $\frac{4}{\sqrt[3]{x}}$ **f** 3

- 2 $p = 4^{a}$ and $q = 4^{b}$ Write in terms of p and q a 4^{a+b} b 4^{b-a} c 4^{2a} d 4^{b-2}
- **3 a** $2^3 \times 2^n = 2^9$

Work out the value of *n*.

b $2x^3 = 128$

Work out the value of *x*.

Answers

.....

.....