

Solving quadratic equations

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$ $5x^2 - 15x = 0$	1 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x = 0$.
5x(x-3)=0	2 Factorise the quadratic equation. 5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, ac = 12	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term $(7x)$ using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x+4) = 0$ or $(x+3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve $9x^2 - 16 = 0$

$9x^2 - 16 = 0$ (3x + 4)(3x - 4) = 0	1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
So $(3x + 4) = 0$ or $(3x - 4) = 0$	2 When two values multiply to make zero, at least one of the values must
$x = -\frac{4}{3}$ or $x = \frac{4}{3}$	be zero.3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

	-
b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x-4) = 0$ or $(2x+3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice questions

1	Solve				
	a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$	
	c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$	
	e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$	
	g	$x^2 - 10x + 24 = 0$	h	$x^2 - 36 = 0$	
	i	$x^2 + 3x - 28 = 0$	j	$x^2 - 6x + 9 = 0$	
	k	$2x^2 - 7x - 4 = 0$	1	$3x^2 - 13x - 10 = 0$	
•	C 1				

2	Solve
-	DOIVE

a	$x^2 - 3x = 10$
c	$x^2 + 5x = 24$
e	x(x+2) = 2x + 25

- **g** $x(3x+1) = x^2 + 15$
- **b** $x^2 3 = 2x$ **d** $x^2 - 42 = x$ **f** $x^2 - 30 = 3x - 2$ **h** 3x(x - 1) = 2(x + 1)

Hint

Get all terms onto one side of the equation.

Answers

1	a	$x = 0 \text{ or } x = -\frac{2}{3}$	b	$x = 0 \text{ or } x = \frac{3}{4}$
	c	x = -5 or x = -2	d	x = 2 or x = 3
	e	x = -1 or $x = 4$	f	x = -5 or x = 2
	g	x = 4 or x = 6	h	x = -6 or x = 6
	i	x = -7 or x = 4	j	x = 3
	k	$x = -\frac{1}{2}$ or $x = 4$	1	$x = -\frac{2}{3}$ or $x = 5$
2	a	x = -2 or x = 5	b	x = -1 or $x = 3$
	c	x = -8 or x = 3	d	x = -6 or x = 7
	e	x = -5 or x = 5	f	x = -4 or x = 7
	g	$x = -3 \text{ or } x = 2\frac{1}{2}$	h	$x = -\frac{1}{3}$ or $x = 2$